کاربرد شبکه های عصبی مصنوعی در پیش بینی عملکرد محصول کلزا
نویسندگان
چکیده
پیش بینی عملکرد محصولات کشاورزی نقش مهمی در سیاست گذاری های بخش کشاورزی ایفا می کند. آشکارترین کاربرد پیش بینی عملکرد، تعیین اعتبار لازم توسط دولت جهت خرید محصول و قیمت گذاری آن برای سال آینده می باشد. تحقیقات مربوط به پیش بینی عملکرد محصولات کشاورزی بیشتر بر پایه استفاده از تحلیل رگرسیونی استوار بوده است. در این پژوهش عملکرد محصول کلزای دیم در منطقه گنبد استان گلستان توسط شبکه های عصبی مصنوعی با استفاده از داده های هواشناسی 11 سال زراعی (1388-1377) پیش بینی شد. ورودی های شبکه های عصبی میانگین بارندگی هفتگی، میانگین درجه حرارت هفتگی، میانگین رطوبت نسبی هفتگی و میانگین تعداد ساعات آفتابی هفتگی و خروجی آنها میزان عملکرد محصول بر حسب کیلوگرم در هکتار می باشد. از شبکه عصبی پرسپترون چند لایه (mlp) با الگوریتم آموزش پس انتشار لونبرگ- مارکواردت(levenberg-marquardt) (lm) برای پیش بینی عملکرد استفاده شد و معیارهای ریشه میانگین مربع خطا (rmse)(root mean square error) و مجذور ضریب هم بستگی (r2)(correlation coefficient) جهت ارزیابی کارآیی شبکه استفاده شده به کارگرفته شدند. نتایج به دست آمده نشان داد که شبکه عصبی مصنوعی با ساختار 1-20-13 دارای کمترین مقدار rmse برابر با 235/101 و بیشترین مقدارr2 برابر با 997/0 در میان ساختارهای مختلف شبکه عصبی به کارگرفته شده می باشد. این نتایج نشان دهنده توانایی بالای شبکه عصبی آموزش دیده در پیش بینی عملکرد محصول کلزاست.
منابع مشابه
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملکاربرد شبکههای عصبی مصنوعی در پیشبینی عملکرد محصول کلزا
Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN) using 11 crop year climate data (1998-2009) in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, m...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص های کلان علم و فناوری
ارزیابی تحقیق و توسعه و ارتباط بین تولید علم و تکنولوژی در سطح کلان کشورها به دلیل حجم بالای اطلاعات و تغییر و تحولات سریع در این حوزه محدود بوده است. این پژوهش با هدف درک ارتباط و عملکرد توسعه فناوری در رابطه با فعالیتهای تولید علم در سطح کشورها صورت پذیرفته است که از نوع تحقیقات توصیفی-کاربردی میباشد. هدف ساخت مدلی با استفاده از الگوریتم های پیشرفته است که توانایی پیشبینی شاخص فناوری را ...
متن کاملمقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت
در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکههای مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکههای...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
متن کاملکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
تولید محصولات زراعی و باغیجلد ۳، شماره ۱۰، صفحات ۱۵۷-۱۶۴
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023